Effective ranking + speciation = Many-objective optimization

نویسندگان

  • Mario Garza-Fabre
  • Gregorio Toscano Pulido
  • Carlos A. Coello Coello
  • Eduardo Rodriguez-Tello
چکیده

Multiobjective optimization problems have been widely addressed using evolutionary computation techniques. However, when dealing with more than three conflicting objectives (the so-called many-objective problems), the performance of such approaches deteriorates. The problem lies in the inability of Pareto dominance to provide an effective discrimination. Alternative ranking methods have been successfully used to cope with this issue. Nevertheless, the high selection pressure associated with these approaches usually leads to diversity loss. In this study, we focus on parallel genetic algorithms, where multiple partially isolated subpopulations are evolved concurrently. As in nature, isolation leads to speciation, the process by which new species arise. Thus, evolving multiple subpopulations can be seen as a potential source of diversity and it is known to improve the search performance of genetic algorithms. Our experimental results suggest that such a behavior, integrated with an effective ranking, constitutes a suitable approach for manyobjective optimization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive -Ranking and Distribution Search on Evolutionary Many-objective Optimization

In this work, we study the effectiveness of Adaptive -Ranking for distribution search in the context of many-objective optimization. Adaptive -Ranking re-classifies sets of non-dominated solutions using iteratively a randomized sampling procedure that applies -dominance with a mapping function f(x) 7→ f (x) to bias selection towards the distribution of solutions implicit in the mapping. We anal...

متن کامل

Adaptive ε-Ranking on many-objective problems

This work proposes Adaptive e-Ranking to enhance Pareto based selection, aiming to develop effective many-objective evolutionary optimization algorithms. eRanking fine grains ranking of solutions after they have been ranked by Pareto dominance, using a randomized sampling procedure combined with e-dominance to favor a good distribution of the samples. In the proposed method, sampled solutions k...

متن کامل

Interval-based ranking in noisy evolutionary multi-objective optimization

As one of the most competitive approaches to multi-objective optimization, evolutionary algorithms have been shown to obtain very good results for many realworld multi-objective problems. One of the issues that can affect the performance of these algorithms is the uncertainty in the quality of the solutions which is usually represented with the noise in the objective values. Therefore, handling...

متن کامل

Reference Point Approaches and Objective Ranking

The paper presents a reflection on some of the basic assumptions and philosophy of reference point approaches, stressing their unique concentration on the sovereignty of the subjective decision maker. As a new development in reference point approaches also the concept of objective ranking is stressed, defined as dependent only on a given set of data, relevant for the decision situation, and ind...

متن کامل

Speeding up many-objective optimization by Monte Carlo approximations

Many state-of-the-art evolutionary vector optimization algorithms compute the contributing hypervolume for ranking candidate solutions. However, with an increasing number of objectives, calculating the volumes becomes intractable. Therefore, although hypervolume-based algorithms are often the method of choice for bi-criteria optimization, they are regarded as not suitable for manyobjective opti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011